### Bookshelf

Total GMAT MathJeff's complete Quant guide, on sale now! |

Total GMAT VerbalEverything you need to ace GMAT Verbal! |

New: GMAT 111Improve every aspect of your GMAT prep! |

**1,800 Practice Math Questions**

GMAT Official Guide

OG Math | OG Verbal

Guides To the Official Guide

Free: OG12 explanations!

**GMAT Question of the Day**

Beginner's Guide to the GMAT

GMAT Hacks Affiliate Program

### Categories

- General Study Tips
- Goals and Planning
- CAT Strategy
- The Mental Game
- GMAT Math Strategy
- GMAT Math Topics
- Mental Math
- Data Sufficiency
- Critical Reasoning
- Reading Comprehension
- Sentence Correction
- Analytical Writing Assessment
- Business School Admissions
- GMAT Prep Resources
- Practice Questions
- Total GMAT Math
- Total GMAT Verbal

## Official Guide Explanation:

Data Sufficiency #110

**Background**

This is just one of hundreds of free explanations I've created to the quantitative questions in The Official Guide for GMAT Review (12th ed.). Click the links on the question number, difficulty level, and categories to find explanations for other problems.

These are the same explanations that are featured in my "Guides to the Official Guide" PDF booklets. However, because of the limitations of HTML and cross-browser compatibility, some mathematical concepts, such as fractions and roots, do not display as clearly online.

Click here for an example of the PDF booklets. Click here to purchase a PDF copy.

**Solution and Metadata**

**Question****: 110**

Page: 282

Difficulty: **5** (Moderate)

Category 1: Arithmetic > Properties of Integers > Factors and Multiples

Category 2: Arithmetic > Properties of Integers > Other

Category 3: Arithmetic > Properties of Integers > Evens and Odds

**Explanation:** We can express the question as follows:

uth = 96, where u, t, and h represent the units, tens, and hundreds digit of the number m. We're looking specificaly for the units digit, u. Keep in mind that the three variables must be digits, so they must be between 0 and 9, inclusive. It is worthwhile to figure the prime factorization of 96 to get a sense of the possibilities:

96 = 2 * 2 * 2 * 2 * 2 * 3

For instance, the three digits could be 4 (2 * 2), 8 (2 * 2 * 2), and 3. Or 2, 8, and 6. There may be other possibilities; the important thing isn't to figure out all of the possible permutations before looking at the statements. Rather, understand that the three numbers must include the complete prime factorization of 96.

Statement (1) is sufficient. If m is odd, the units digit in m must be odd. (And remember, the units digit is what we're looking for.) Given the prime factorization of 96, we can rule out 5, 7, and 9. 1 and 3 are the only possibilities. We've already seen that the digits could be 4, 8, and 3. Could they include 1 instead? That would require that the other two digits include the complete prime factorization. It turns out that it's impossible. If one of the numbers is 8, the other is 12; if one of the numbers is 6, the other is 16. There's no way to multiply two single - digit numbers by each other to reach 96. Thus, the units digit of m is 3.

Statement (2) is insufficient. If the hundreds digit is 8, that means the other two digits must include the prime factorization of 96 except for 2 * 2 * 2. That's 2 * 2 * 3. That could be 4 and 3 or 2 and 6. Further, we don't know which of those numbers would be the tens or units digit. Choice (A) is correct.

Click here for the full list of GMAT OG12 explanations.

You should follow me on Twitter. While you're at it, take a moment to
subscribe to
GMAT Hacks via RSS or Email. |

Total GMAT Math
The comprehensive guide to the GMAT Quant section. It's "far and away the best study material
available," including over 300 realistic practice questions and more than 500 exercises! |