### Bookshelf

 Total GMAT Math Jeff's complete Quant guide, on sale now!
 Total GMAT Verbal Everything you need to ace GMAT Verbal!
 New: GMAT 111 Improve every aspect of your GMAT prep!

1,800 Practice Math Questions

GMAT Official Guide
OG Math | OG Verbal

Guides To the Official Guide
Free: OG12 explanations!

GMAT Question of the Day

Beginner's Guide to the GMAT

GMAT Hacks Affiliate Program

### Resources

MBA.com
GMAC Official Site
Free GMATPrep Practice Tests

Stacy Blackman Consulting
Book | Essay Guides

GRE HQ
Total GRE Math

Ultimate SAT Verbal

## Official Guide Explanation:Data Sufficiency #157

Background

This is just one of hundreds of free explanations I've created to the quantitative questions in The Official Guide for GMAT Review (12th ed.). Click the links on the question number, difficulty level, and categories to find explanations for other problems.

These are the same explanations that are featured in my "Guides to the Official Guide" PDF booklets. However, because of the limitations of HTML and cross-browser compatibility, some mathematical concepts, such as fractions and roots, do not display as clearly online.

Question: 157
Page: 287
Difficulty: 5 (Moderate)
Category 1: Geometry > Triangles > Special Tris
Category 2: Algebra > Linear Equations-Two Unk >

Explanation: If the hypotenuse of a right triangle is 10, we know that:

a2 + b2 = 102

To find the perimeter, we'll need the specific values of a and b.

Statement (1) is sufficient. The legs of a right triangle (a and b) are the base and height, so we express the area as:

(1/2)ab = 25

ab = 50

It would take some involved algebra to find the precise values of a and b, but since we have two equations and two variables, we should be able to solve.

(Alert readers will note that, since the first equation involves exponents, these are not "linear" equations. If you do solve, you will find multiple possible answers. However, one of the two possible answers is negative, and in a geometry question, there can't be negative lengths. This is a typical "catch" in geometry Data Sufficiency questions.)

Statement (2) is also sufficient. It tells us that a = b. We can simplify the original equation and solve:

a2 + a2 = 100

2a2 = 100

a2 = 50

a = 5 rt[2]

Choice (D) is correct.

 You should follow me on Twitter. While you're at it, take a moment to subscribe to GMAT Hacks via RSS or Email.

 Total GMAT Math The comprehensive guide to the GMAT Quant section. It's "far and away the best study material available," including over 300 realistic practice questions and more than 500 exercises! Click to read more.