### Bookshelf

 Total GMAT Math Jeff's complete Quant guide, on sale now!
 Total GMAT Verbal Everything you need to ace GMAT Verbal!
 New: GMAT 111 Improve every aspect of your GMAT prep!

1,800 Practice Math Questions

GMAT Official Guide
OG Math | OG Verbal

Guides To the Official Guide
Free: OG12 explanations!

GMAT Question of the Day

Beginner's Guide to the GMAT

GMAT Hacks Affiliate Program

### Resources

MBA.com
GMAC Official Site
Free GMATPrep Practice Tests

Stacy Blackman Consulting
Book | Essay Guides

GRE HQ
Total GRE Math

Ultimate SAT Verbal

## Official Guide Explanation:Problem Solving #65

Background

This is just one of hundreds of free explanations I've created to the quantitative questions in The Official Guide for GMAT Review (12th ed.). Click the links on the question number, difficulty level, and categories to find explanations for other problems.

These are the same explanations that are featured in my "Guides to the Official Guide" PDF booklets. However, because of the limitations of HTML and cross-browser compatibility, some mathematical concepts, such as fractions and roots, do not display as clearly online.

Question: 65
Page: 161
Difficulty: 4 (Moderately Easy)
Category 1: Algebra > Linear Equations-One Unk >

Explanation: We can summarize the question with an equation, where a is the number of apples and b is the number of bananas:

0.70(a) + 0.50(b) = 6.30

Generally speaking, it is impossible to solve a single equation with two variables. However, this question implies that we can solve it. Because there must be an integer number of apples and bananas, some of the mathematical possibilities (0 apples and 12.6 bananas, for instance) aren't practical.

Thus, the algebra isn't going to get us very far. Recognize that the total price of the bananas will always be either an integer dollar amount (2 bananas = 1.00) or a dollar amount plus fifty cents (5 bananas = 2.50). The total price of the apples will vary more in the cents column.

Here are the possibilities:

1 apple = 0.70

2 apples = 1.40

3 apples = 2.10

4 apples = 2.80

5 apples = 3.50

6 apples = 4.20

7 apples = 4.90

8 apples = 5.60

Since the bananas will add up to an even dollar amount or a dollar amount plus fifty cents, the apples must add up to either a dollar amount plus thirty cents or a dollar amount plus eighty cents. The only possibility is 4 apples for \$2.80. That leaves \$3.50 for bananas, which we can accomplish with 7 bananas. The total number, then, is 11, choice (B).

 You should follow me on Twitter. While you're at it, take a moment to subscribe to GMAT Hacks via RSS or Email.

 Total GMAT Math The comprehensive guide to the GMAT Quant section. It's "far and away the best study material available," including over 300 realistic practice questions and more than 500 exercises! Click to read more.